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Abstract: Studies have shown that teachers do not have good understanding of 

calculus concepts. This paper reports a study of teachers’ content knowledge of 

calculus, on 27 in-service mathematics teachers. A questionnaire dealing with the 

concept images and concept definitions of various calculus concepts was administered 

to the group of participating teachers.  The responses to the questionnaire showed that 

most of the participants had not built up sufficiently rich and comprehensive concept 

images related to the various differential calculus concepts, and they generally turned 

to procedures in handling calculus tasks. This study sheds light on the type of calculus 

content needed by school teachers. 
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Introduction 

Calculus has been introduced into the secondary school curriculum in many 

countries.  The secondary school calculus curriculum is what Tall (1992) refers to as 

“informal calculus”, which involves “informal ideas of rate of change and the rules 

of differentiation with integration as the inverse process, with calculating areas, 

volumes etc. as application of integration.” (Tall, 1992).  

 

Studies have also shown that generally students performed poorly in conceptual 

tasks in calculus (e.g. Amit & Vinner, 1990). Both students and teachers put their 

emphasis on procedures and avoided the concepts related to calculus (Amit & 

Vinner, 1990).  

 

How a subject is being taught in schools is largely affected by the teachers’ 

competency of the subject knowledge (Thompson, 1992; Toh, 2007b, 2007c).  Does 

the students’ poor performance in calculus tasks point to any deficiency in teachers’ 

content knowledge on the subject? Studies (e.g. Mastorides & Zachariades, 2004; 

Huillet, 2005) show that in-service teachers specifically have difficulties with the 

concepts related to limits and continuity of functions.  
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This paper reports the results of an exploratory study of in-service mathematics 

teachers’ content knowledge on calculus, on a group of in-service mathematics 

teachers attending a professional development course in Singapore. 

 

Theoretical Background 

 

Teachers’ content knowledge 

It is generally agreed that strong content knowledge is a necessary (but not 

sufficient) condition for good teaching in Mathematics (Toh, Chua & Yap, 2007). 

Usiskin (2001, p.86) asserted that in order “to teach well, a teacher of mathematics 

should know a great deal of mathematics.  The higher the level taught, the more the 

teacher needs to know”.   

 

Studies have also challenged the common belief that the more a teacher knows 

about his subject, the more effective he can be.  Begle (1979, p.51) believes that 

“the effects of a teacher’s subject matter knowledge and attitudes on student 

learning seem to be far less powerful than many of us assumed”.  Based on Begle’s 

view, a teacher’s subject matter knowledge should not be measured by the number 

of modules of undergraduate mathematics taken, see Ball (1991).  

 

According to Usiskin (2001), the “great deal of mathematics” does not merely refer 

to the mathematics content knowledge the teachers acquired during their 

undergraduate mathematics modules.  It refers to the entire branch of mathematics 

that forms what he calls “teachers’ mathematics”. This includes explanation of new 

ideas, alternative ways of approaching problems, including ways with and without 

calculator and computer technology, how ideas studied in school relate to ideas 

students may encounter in later mathematics study (Usiskin, 2001).   

 

Teacher’s competency of the mathematics content affects how the subject is being 

taught is classroom (Thompson, 1992; Toh, 2007b, 2007c). According to Mohr 

(2006) and Shulman (1986), the content of mathematics includes (1) content 

knowledge, that is, knowledge of the concepts, procedures, and problem-solving 

processes within the area of mathematics they are teaching, and (2) pedagogical 

knowledge involves knowledge of teaching the content to their students. Shulman 

(1986) first coined the term “pedagogical content knowledge” to refer to “the ways 

of representing and formulating the subject that make it comprehensible to others” 

and “[the] understanding of what makes the learning of topics easy or difficult” 

(Shulman, 1986, p.9).  Pedagogical content knowledge is also discussed by 

Carpenter, Fennema, Peterson and Carey (1988).  Teachers need to have 

“knowledge of the conceptual and procedural knowledge that students bring to the 

learning of a topic, the misconceptions about the topic they may have developed, 
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and the stages of understanding they are likely to pass through…”(Carpenter et al, 

1988).     

 

In this paper, we shall focus on the content knowledge in relation to school calculus. 

Sound content knowledge in school calculus includes pre-calculus concepts like 

functions and graphs (Toh, 2007a; p. 15), and other concepts in algebra and the 

notations of algebra (Dias, 2000); calculus concepts include limits and continuity, 

differentiation and differentiability, the definitions of integration as area under the 

graph and integration as anti-derivative (Lee, 2006; pp. 244 – 246).   

 

Learning Difficulties in Calculus and Related concepts 

Teachers’ difficulties in calculus concepts could have developed when they were 

students.  Thus, existing literature on students’ difficulties in calculus and related 

concepts provides a suitable framework for the study of teachers’ content 

knowledge in calculus. 

 

Students’ difficulties in calculus stem from their learning difficulties in dealing with 

topics on functions, graphs and other related algebra concepts (Judson & Nishimori, 

2005).  In the study carried out by Judson and Nishimori (2005), many students had 

an immature understanding of functions which could have led to misconceptions in 

problems involving application of differentiation and integration.  Usiskin (2003) 

believed that students may perform better in calculus if they have been given early 

exposure to concepts involving inequality, summation, and other algebraic concepts. 

 

Instructions in secondary school calculus classrooms often emphasize procedural 

knowledge grounded in algebra (Morris, 1999). Hence, it is not surprising that 

students neglect the conceptual part of calculus and only consider the 

conmputational part, thereby making calculus learning meaningless (Bezuidenhout, 

2001; Davis & Vinner, 1986; Toh, 2007a, p. 74).  According to Aspinwell and 

Miller (1997), “students regard computation as the essential outcome of calculus 

and thus end their study of calculus with little conceptual understanding.”  

 

However, many concepts in calculus, such as the concept of derivative, are 

especially important even to people whose major is not mathematics (Amit & 

Vinner, 1990). Ironically, the concepts that are important to non-mathematics 

students are the conceptual knowledge of calculus, not the procedural aspects.   

 

The sequence of teaching material in the secondary school calculus content could be 

another source of learning difficulties for students.  Take for example, the teaching 

of integral calculus in schools. The most common approach in schools is to define 

integration as the antiderivative.  Following that, one derives at evaluating the 
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definite integral with the Fundamental Theorem of Calculus (Anatoli, 2008).   As a 

result of this sequencing of teaching materials, most students do not acquire 

appropriate comprehension of the definite integral concept (Anatoli, 2008; Orton, 

1983; Sealey, 2006;  Thomas and Hong, 1996).  

 

Studies on students’ learning of calculus can be traced to Tall and Vinner in the late 

seventies and the early eighties. Tall and Vinner (1981) used the term concept 

image to describe “the total cognitive structure that associated with the concept, 

which includes all the mental pictures, associated properties and processes” (p. 

152).  They used the term concept definition as a form of words used by the learner 

to define the concept.   

 

The difficulties that students encounter in calculus concepts (Davis & Vinner, 

1986), and teachers’ misconceptions in limit concepts (Akkoc, Huillet, 2005; 

Yesildere & Ozmantar, 2007) can be explained by the existence of a gap between 

the concept definition and the concept image of the limit concept (Tall and Vinner, 

1981).   The calculus concept of limit is not “commonsensical” to them as it 

conflicts the use of this term in daily life (Davis & Vinner, 1986; Tall & Vinner, 

1981).  

 

This paper aims at answering the following five research questions: 

1. Are in-service teachers able to identify graphical representations of 

functions and its related domain? 

2. Are in-service teachers able to find the limits (including the left- and 

right-limits) of functions graphically? 

3. How do the in-service teachers react to the differentiation of functions 

which do not have easily available “formulae”? 

4. Are in-service teachers familiar with the physical interpretation of the 

signs of the first and second derivatives with reference to a graph? 

5. Are in-service teachers able to associate the definite integral with the area 

under the given graph? 

 

Method 
 

The participants of this study were 27 in-service mathematics teachers from the 

various secondary schools in Singapore. They were teachers relatively new to the 

teaching service (with less than five years of experience) and selected to attend a 

professional development course for mathematics teachers. The participants 

consisted of 14 male teachers and 13 female teachers.  All the teachers had less than 

five years of teaching experience.  Among the 27 teachers, 11 of them had obtained 

at least a Bachelor’s degree in Mathematics while 16 of them had a Bachelor’s 
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degree in Engineering from one of the two local universities.  Thus, all the 

participants had had at least one year of undergraduate experience of university 

calculus.  

 

This study models after Amit and Vinner (1990)’s, in which a questionnaire was 

used to elicit the participants’ knowledge of calculus.  In addition, careful 

interpretation of the participants’ response, together with some speculation, was 

used. 

 

The questionnaire was administered during the first one hour of the first session of 

the professional development course. The questionnaire consisted of seven 

questions dealing with the concept image and concept definition of the various 

calculus concepts. These concepts were identified as essential for secondary school 

mathematics teachers (Toh, 2007a).  

 

The participants were required to record their names on the answer scripts purely 

for administrative reasons.  They were further informed that the result of this 

questionnaire was not taken as an assessment but to facilitate the course instructor 

to better understand the teachers’ content knowledge of calculus, so that future in-

service courses could be tailored more appropriately for the participants. 

 

For our study and discussion in this paper, the scripts were coded arbitrarily from 1 

to 27. 

 

Q1. Can each of the following graphs represent a function?  If not, provide a 

reason below the space provided. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Graph (a) Graph (b) 

2 4 7 
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This question checks the teachers’ association of the concept of functions with the 

concept image in terms of their graphical representation.   

 

Q2. Sketch the graphs of  
1

122






x

xx
y  and 1 xy on separate diagrams 

below. 

 

This question examines the teachers’ ability to associate functions with removable 

discontinuity with their graphs (a continuous graph with a “punctured hole”).   

 

Q3. Fill in the appropriate answers.  If you think the answer does not exist, 

write in any form that you think is appropriate. 

 

 

 

 

 

 

 

 

 

 
 

 (a) )(flim
3

x
x 

 (b) )(flim
3

x
x 

 (c) )(flim
3

x
x

 (d) )(flim
5

x
x 

  

 

 (e) )(flim
5

x
x 

 (f) )(flim
5

x
x

 (g) )(flim
4

x
x 

 (h) )(flim x
x

 

 

 (i) f(3) (j) f(5) (k) f(-4)   

 

This question checks the teachers’ ability to evaluate limits from a dynamic or 

cinematic perspective (Trouche, 1996, quoted in Huillet, 2005), instead of 

procedural computation (Aspinwell et al, 1997). 

 

Q4. Given that y = |x| (the absolute value of x), find .
dx

dy
 

This question identifies the teachers’ ability to link kinks as non-differentiable 

points on a graph.  This question could also be illustrative of how teachers find 

derivatives of functions which do not have an easily available formula for 

differentiation. 

5 3 -4 

2 

3 

7 

y = f(x) 
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Q5. Given that y = sin x
o
, find .

dx

dy
 

Most errors made in carrying out tasks in differentiation were the result of failure to 

grasp the principles which were essential to the solution (Orton, 1983). This 

question was designed to check whether teachers were familiar with the steps 

involved in the first principle of differentiation (The well-known formulae of the 

derivative of trigonometric functions are valid provided the angle of x is measured 

in radians.). The teachers’ solution could also be illustrative of how teachers 

respond to differentiation of functions without an easily available formula for 

differentiation. 

 

Q6. The diagram shows a sketch of a function.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fill in each entry in the following table by using the signs: +, -, 0 or 

 “undefined”. 

 

Region x < 5 x = 5 x > 5 

y (a1) (a2) (a3) 

dx

dy
 

(b1) (b2) (b3) 

2

2

dx

yd
 

(c1) (c2) (c3) 

 

 

This question checked the teachers’ ability to interpret graphically the first and 

second derivatives in relation to the graphs of the functions they represent.   For our 

discussion in the next section, the entry of each of the above cells is labeled as (a1) 

to (c3). 

 

5 
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Q7. Find the following definite integrals without using integration techniques.

 (a)  

5

0

)3( dxx    (b)  

a

dxxa

0

22  

 

This question examined the teachers’ ability to evaluate some integrals by 

interpreting them as areas under graphs. This is an important skill that in-service 

teachers need to possess (Toh, 2007a, pp. 124 - 126), but which were usually 

lacking in the teachers (Anatoli, 2008). 

 

 

Results and Discussion 

 

In this section, the results of the participants’ responses to the seven questions are 

discussed in relation to the five research questions raised in Section 2. 

 

Research Question 1 - Are In-service Teachers Able to Identify Graphical 

Representations of Functions and its Related Domain? 

This question could be answered by Q1 and Q2. 25 out of 27 participants 

recognized that Graph (a) of Q1 does not represent a function. 21 participants 

substantiated their answers for Graph (b) of Q1 with correct reasons; three 

participants did not state the reasons for the choice of their answers; another three 

participants justified their answers by incorrect reasons, as appended in Table 1.   

 

Table 1 

The Incorrect Reasons to Substantiate the Answers to Graph (b) of Q1 

Script No. Answer Incorrect answer provided 

13 No Never see this type of graph before 

16 No Piecewise defined function 

23 No The domain is not continuous 

 

In Q2, all the participants sketched the correct graph of y = x – 1.  However, 15 out 

of the 27 participants did not distinguish the between the two given functions 

1 xy  and 
1

122






x

xx
y . Five participants used graph plotting and obtain an 

inaccurate (non-linear) curve of the latter function with a vertical asymptote at 

1x .  Seven participants sketched the correct graphs for both functions, identifying 

the point of removable discontinuity in the graph of the latter function. 
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Discussion of the Result for the First Research Question 

The teachers evidently had the concept image of a function represented in graphical 

form.  Evidence in the scripts showed that the participants had used the “vertical 

line test” to demonstrate that Graph (a) does not represent a function.  However, 

some teachers were unable to associate with piecewise defined functions or 

functions whose domain is not continuous in Graph (b). 

 

In Q2, many teachers did not recognize the existence of removable discontinuity of 

the graph (represented by continuous graphs with “punctured holes”).  Instead, they 

turned to the algebraic procedures of simplifying the associated algebraic 

expressions, without regard to the domain of the given function.  

 

Second Research Question - Are In-service Teachers Able to Find the Limits 

(Including the Left- and Right-Limits) of Functions graphically? 

This question is answered by Q3 in the questionnaire. The participants’ performance 

of Q3 is summarized in Table 2. 

 

Table 2 

Participants’ Response to Q3(a) to (k) 

Q3 Correct answers No. of 

correct 

answers 

No. of 

wrong 

answers 

Samples of wrong 

answers (frequency) 

(a) 7 23 4 Insufficient information (1); 

between 3 and 7 (1); 3 (2) 

(b) 3 17 10 Not applicable (2);  

infinity (2);   

7 (5); insufficient info (1) 

(c) Does not exist 8 19 7 (16);  7 or 3 (1); 

Any value (2) 

(d) Infinity / does not exist 27 0  

(e) Same as (d) 26 1 Left answer blank (1) 

(f) Does not exist / undefined / 

infinity 

27 0  

(g) 2 23 4 2.5 (2);  -4 (1);  1 (1) 

(h) 0 25 2 Infinity (2) 

(i) 7 26 1 3 or 7 (1) 

(j) Does not exist / undefined 13 14 Infinity (14) 

(k) 2 27 0  
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Discussion of the Result for the Second Research Question 

 Concept of limit, left limit and right limit.  Most participants did not identify the 

correct values of the limits, left and right limits correctly at the points of 

discontinuity.  It is suggestive that the teachers’ concept image of limits at a point is 

locked with the algebraic procedure of finding limits of a function.  At points of 

discontinuity, the procedures of finding limits (or one-sided limits) could not be 

applied, hence relatively fewer correct answers for 3(b) and 3(c) compared with 

3(a).   

 

 Concept of “infinity” and limits at infinity.  Most participants had fairly accurate 

concept image of the “limits at infinity” in relation to the value it represents on the 

graph, as indicated by the high frequency of correct answers in Q3(h).  On the other 

hand, many participants had not fully understood the concept of “infinity”, as shown 

in their performance in 3(j). 

 

It is clear that “infinity” might not have associated them with the limiting process, 

but treated as synonymous with “undefined” or “does not exist”.  Thus, teachers 

might not have developed an intuitive or perceptual meaning of the concept of 

infinity. 

 

Research Question 3 - How do the In-service Teachers React to the 

Differentiation of Functions which do not Have Easily Available “Formulae”? 

This is answered by Q4 and Q5 in the questionnaire. 

 

Non-differentiable points. Only four participants presented the correct solution 

for Q4 and identified that the function is not differentiable at x = 0. Two 

participants did not attempt the question; three participants got their solution wrong, 

which is shown in Table 3; the remaining 18 participants did not identify the non-

differentiable point at x = 0.   

 

Table 3 

Incorrect Solutions of Three of the Participants 

Wrong Solution 1 

Script No. 17 

Wrong Solution 2 

Script No. 20 

Wrong Solution 3 

Script No. 23 

y = |x|  1
dx

dy
* 1

dx

dy
* 

There is no solution to this 

question.* 

  

Differentiation of trigonometric functions with domain in units of degree. For 

Q5, there were eight participants who completed the differentiation correctly by 

converting the unit of angle to radian. 17 participants did not convert the angle to 
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degree and left the answer as cos x
o
.  One participant did not attempt this question 

while one other participant misinterpreted the degree sign as “zero” symbol.  

 

Discussion of the Result for the Third Research Question 

Q4 and Q5 demonstrated that the heuristics that the participants had used in 

performing calculus task was to associate the new task with a visually similar task 

that they had already known. In the process of performing the task of 

differentiation, they failed to link the tasks to the concepts or the principles 

underlying the procedures. 

 

According to Selden, Selden, Hawk and Mason (1999), when one encounters a new 

problem, a mental structure, called the problem situation image, is structured.  The 

problem situation image contains tentative solution starts.  From the teachers’ 

performance of these two questions, their tentative solution start was to look for any 

“formulae” that could be clues to leading to the correct solutions, and modified the 

process accordingly, as demonstrated in Figure 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Diagram illustrating how the teachers perform the calculus tasks 

 

 

Without further inputs of the related concept images developed on the various 

calculus concepts, the devised procedure following from tentative solution start is 

likely to be incorrect when one simply associates with a formula that looks visually 

similar. 

 

 

New task:  

|| x
dx

d  









0,

0,
||

xx

xx
x  










0,

0,
||

xx

xx
x

and  1)( x
dx

d
 

Proposed solution 










0,1

0,1
||

x

x
x

dx

d  
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New task:  
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dx

d
sin  

xx
dx

d
cos)(sin   

where x is in 

radian 

Proposed 

solution 

 xx
dx

d
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solution 

start 

Devise 

procedure 
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Research Question 4 - Are In-service Teachers Familiar with the Physical 

Interpretation of the Signs of the First and Second Derivatives with Reference to 

a Graph? 

The response to Q6 is presented in Table 4.  Each of the nine entries is labeled from 

(a1) to (c3) as described in Section 3 above. 

 

Table 4 

Participants’ Responses to Q6 (a1) to (c3) 

Q6 Correct 

answer 

No. correct No. 

wrong 

Detailed wrong answers 

(a1) Negative 27 0  

(a2) 0 26 1 Undefined (1) 

(a3) Positive 27 0  

(b1) Positive 27 0  

(b2) Undefined 19 8 0 (5); Positive (2); Negative (1) 

(b3) Positive 25 2 Negative (2)  

(c1) Positive 12 15 Undefined(3); 0(6);  Negative (4); 

blank (2) 

(c2) Undefined 14 13 0 (9); Negative (1); blank (3) 

(c3) Negative 10 17 0(5); Positive (6); blank (6) 

 

Discussion of the Result for the Fourth Research Question 

From their answers to (a1) to (b3), most participants were able to: 

 associate the sign of the y-values with the region of the graph which is either 

above or below the x-axis; 

 recognize the sign of the first derivative as the increasing or decreasing part of 

the graph.   

 

In the response to (b2), eight out of 27 participants could not recognize that the 

function is non-differentiable at the point where the tangent is parallel to the y-axis. 

Together with Q3, the result shows that the teachers did not have sufficient concept 

images associated with non-differentiability of a point on the graph of function, see 

Figure 2.  The concept images associated with non-differentiability are usually 

points which are “not smooth” – this includes discontinuous points and kinks.   
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Figure 2.  Concept definition and associated concept images of non-differentiable 

points 

 

Many participants did not associate the second derivative with the concavity of the 

graph, as evident from the participants’ response to (c1) and (c3).  

 

Nine participants indicated the answer for (c2) as “zero” for the inflexion point at x 

= 5. This could be explained by the fact that somehow the teachers had the concept 

image of a point of inflexion, together with the procedure of finding the point of 

inflexion by equating the second derivative to be zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Relation between the concept definition, concept image and the 

procedure to find the points of inflexion. 
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At the point x = a, the 
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The application of the procedural rule of finding points of inflexion could cause 

incomplete concept images and even misconceptions about points of inflexion, as 

not all points of inflexion are differentiable (Toh, 2007a, pp. 96 – 97). 

 

Research Question 5 - Are In-service Teachers Able to Associate the Definite 

Integral with the Area Under the Given Graph? 

For Q7(a), 25 participants identified that  

5

0

)3( dxx  represented the area under the 

straight line graph. Two participants sketched the graph of y = x + 3 wrongly. Two 

other participants performed direct integration and obtained the answers directly, 

which was considered unacceptable for this question. 

 

For Q7(b), the different answers provided by the participants can be summarily 

classified into six categories, from No. I to VI in Table 5.   

 

Table 5 

Different Categories of Answers from the Participants for Q7(b) 

No. Category Number of 

participants 

I Submitted completely correct solution 4 

II Correct circle but recognized the area as the entire semicircle 

for x > 0 

7 

III Could recognize the correct circle but recognizes the integral 

as representing the area of the entire circle 

4 

IV Recognized the wrong circle but could interpret definite area 

as area under the graph 

1 

V Evaluated the definite integral directly. 8 

VI Did not attempt the question 3 

 Total 27 

 

The 16 participants whose solutions were classified as Categories I to IV interpreted 

the definite integral as areas under the graph for this question.  These participants 

were able to interpret that 22 xay  somehow represented a circle on the 

Cartesian plane.  

 

Discussion of the Result for the Fifth Research Question 

Most participants had the concept definition of the definite integral as the area under 

the graph, as illustrated by Category I to IV in Table 5. 
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The mistakes made by the participants under Category II to IV in Table 5 were that 

they were unable to determine the geometrical shape represented by 22 xay  . 

The seven participants classified as Category II and III for their response to Q7(b) in 

Table 5 demonstrated that they were not aware that 22 xay  represented only 

a semicircle above the x-axis, but a full circle.  The root cause of this problem could 

be related to algebra, at the definitional level, that the radical notation “ ” only 

denotes the positive square root.   This is a common misconception among 

secondary school teachers at the definitional level and would be addressed at 

algebra content upgrading courses for secondary school mathematics teachers (Toh, 

2007d).   

 

Limitation of this Study 

 

In this study, the method used was based on a questionnaire, followed by 

interpretation of the participants’ response. This approach was rather limited.  A 

careful interview could have provided more useful information and illuminating 

facts about teachers’ conceptual knowledge of calculus, although it should also be 

noted that interviews not properly administered could also affect the interviewees’ 

ideas and hence render the results unreliable (Amit & Vinner, 1990; p. 4).  Due to 

constraint of time, formal interviews could not be arranged.    

 

In addition, it should also be noted that the sample size in this study was rather 

small and might not be random so that it might be difficult to render the results of 

this study to be generalizable.  However, it is hoped that this exploratory study 

could spur further research into exploring specific areas of teachers’ content 

knowledge in various aspects of calculus. 

 

Reference 

 

Akkoc, H., Yesildere, S. & Ozmantar, F. (2007).  Prospective mathematics teachers’ 

pedagogical content knowledge of definite integral: the problem of limit process. 

In D. Kuchermann (Ed.), Proceedings of the British Society for Research into 

Learning Mathematics (Vol. 27, pp. 7–12). London: British Society for Research 

into Learning Mathematics. 

Amit, M., Vinner, S. (1990). Some misconceptions in calculus – anecdotes or the tip 

of an iceberg? Proceedings of the Annual Conference of the International Group 

for the Psychology of Mathematics Education, 3–10. 

Anatoli, K. (2008).  Approaches to the integral concept: The case of high school 

calculus.  Paper for YESS–4, August 2008. 



84 Mathematics Teachers’ Content Knowledge of Calculus 

 

 

Aspinwell, L., & Miller, D. (1997).  Students’ positive reliance on writing as a 

process to learn first semester calculus. Journal of Institutional Psychology, 24, 

253–261. 

Ball, D. L. (1991). Making subject-matter knowledge part of the equation. Advances 

in Research on Teaching, 2, 1–48. 

Begle, E. G. (1979). Critical variables in mathematics education: Findings from a 

survey of empirical literature. Washington DC: Mathematics Association of 

America and the National Council of Teachers of Mathematics. 

Bezuidenhout, J. (2001).  Limits and continuity: Some conceptions of first year 

students.  International Journal of Mathematical Education in Science and 

Technology, 32, 487–500. 

Carpenter, T. P., Fennema, E., Peterson, P. L., & Carey, D. A. (1988). Teachers’ 

pedagogical content knowledge of students’ problem solving in elementary 

arithmetic. Journal for Research in Mathematics Education, 19(5), 385–401. 

Davis, R. B., & Vinner, S. (1986). The notion of limit: some seemingly unavoidable 

misconception stages. Journal of Mathematical Behaviour, 5, 281–303. 

Dias, A. L. B. (2000). Overcoming algebraic and graphic difficulties. In M.J. 

Schmitt, & K. Safford-Ramus (Eds.), Proceedings of the International 

Conference on Adults Learning Mathematics (pp. 193–200). Melford: ALM. 

Huillet, D. (2005).  Mozambican teachers’ professional knowledge about limits of 

functions. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29
th

 

Conference of the International Group for the Psychology of Mathematics 

Education (Vol. 3, pp. 169–176). Melbourne: PME. 

Judson, T. W., & Nishimori, T. (2005). Concepts and skills in high school calculus: 

An examination of a special case in Japan and the United States. Journal for 

Research in Mathematics Education, 36(1), 24–43. 

Lee, P. Y. (Ed.) (2006). Teaching secondary school mathematics: A resource book.  

Singapore: McGraw–Hill. 

Masteroides, E., & Zachariades, T. (2004).  Secondary mathematics teachers’ 

knowledge concerning the concept of limit and continuity. In M.J. Hoines, & 

A.B. Fuglestad (Eds.), Proceedings of the 28
th
 Conference of the International 

Group for the Psychology of Mathematics Education (Vol. 4, pp. 481–488). 

Bergen: PME. 

Mohr, M. (2006). Mathematics knowledge for teaching. School Science and 

Mathematics, 106(6), 219–220. 

Morris, A. (1999). Developing concepts of mathematical structure: pre-arithmetic 

reasoning versus extended arithmetic reasoning. Focus on Learning Problems in 

Mathematics, 21(1), 44–71.  

Orton, A. (1983). Students’ understanding of integration. Educational Studies in 

Mathematics, 14, 1–18. 



Toh Tin Lam 85 

 

Rosken, B., & Rolka, K. (2007).  Integrating intuition: the role of concept image 

and concept definition for students’ learning of integral calculus.  In The 

Montana Mathematics Enthusiast (TMME) Monograph (Vol. 3, pp. 181–204). 

Vancouver: TMME. 

Sealey, V. (2006).  Student understanding of definite integrals, Riemann sums and 

area under a curve: What is necessary and sufficient?  In S. Alvatore, J. Luis 

Cortina, S.M. & A. Mendez (Eds.), Proceedings of the 28
th
 Annual Meeting of 

the North American Chapter of International Group for the Psychology of 

Mathematics Education. [CD-Rom]. Yucatan: Merida. 

Selden, A., Selden, J., Hauk, S., & Mason, A. (1999). Do calculus students 

eventually learn to solve non-routine problems? (Tech. Rep. No. 1999:5). USA: 

Tennessee Technological University. 

Shulman, L. (1986). Those who understand: Knowledge growth in teaching.  

Educational Researcher, 15(2), 4–14. 

Tall, D. (1992). Students’ difficulties in calculus.  In K-D. Graf, N. Malara, N.  

Zehavi, & J. Ziegenbalg (Eds.), Proceedings of Working Group 3 at ICME–7, 

Québec 1992 (pp. 13–28). Berlin: Freie Universität Berlin.  

Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics 

with particular reference to limits and continuity. Educational Studies in 

Mathematics, 12, 151–169. 

Thomas, M. O. J., & Hong, Y. Y. (1996). The Riemann integral in calculus: 

students’ processes and concepts.  In P. C. Clarkson (Ed.), Proceedings of the 

19
th

 Mathematics Education Research Group of Australasia Conference (pp. 

572–579). Melbourne: MERGA. 

Thompson, A. G. (1992). Teachers’ beliefs and conceptions: a synthesis of the 

research. In D. A. Grouws (Ed.), Handbook of research on mathematics 

teaching and learning (pp. 127–146). New Jersey: NCTM. 

Toh, T. L. (2005). On in-service Mathematics teachers' content knowledge on 

kinematics. Asia-Pacific Forum on Science Learning and Teaching, 6(2). 

Retrieved December 23, 2009, from 

http://www.ied.edu.hk/apfslt/v6_issue2/tohtl/index.htm 

Toh, T. L. (2007a). Calculus for secondary school teachers. Singapore: McGraw-

Hill. 

Toh, T. L. (2007b). Mathematical reasoning from O-Level to A-Level. 

Mathematical Medley, 33(2), 34–40. 

Toh, T. L. (2007c). On in-service teachers’ perception of some questions on 

permutation and combination. EARCOME 2007 Conference Proceeding, 533–

539. 

Toh, T. L. (2007d). An algebra content upgrading course for in-service mathematics 

teachers: A Singapore experience. International Journal of Mathematics 

Education in Science and Technology, 38(4), 489–500. 



86 Mathematics Teachers’ Content Knowledge of Calculus 

 

 

Toh, T. L., Chua, B. L., & Yap, S. F. (2007). School mathematics mastery test and 

preservice mathematics teachers’ mathematics content knowledge. The 

Mathematics Educator, 10(2), 85–102. 

Usiskin, Z. (2001).  A collection of content deserving to be a field. The Mathematics 

Educator, 6(1), 85–98. 

Usiskin, Z. (2003, January). Trends in high school preparation for calculus and 

their implications for the transition to college. Paper presented at the Joint 

Mathematics Meeting, Baltmore, MD. 

 

Author: 

TOH Tin Lam, Mathematics and Mathematics Education, National Institute of 

Education, Nanyang Technological University, 1 Nanyang Walk, NIE07–03–43, 

Singapore 637616; tinlam.toh@nie.edu.sg 

 

 

 


